Все записи автора Birdsergey

Уличное освещение на солнечных батареях

Солнечные батареи в настоящее время находят широкое применение во многих сферах жизни общества. Они имеют много преимуществ. Например, солнечный свет сразу перерабатывается в электроэнергию, что более экономично в сравнении с традиционными методами преобразования энергии. Поэтому стали применять освещение на солнечных батареях. В тех местностях, где нет линии электропередач, применяют для обеспечения энергией дома и предприятия. В местностях, где есть электроэнергия, тоже применяют солнечные батареи. В том числе и для автономного освещения улиц.
Уличное освещение на солнечных батареях
С помощью солнечных батарей освещают улицы и магистрали, парки, дворы и сады в частных домах и даже украшают ландшафтный дизайн. Принцип работы таких светильников такой же, как и у обычных солнечных батарей. Днем солнечный свет, с помощью фотоэлектрического элемента, перерабатывается в энергию. Не обязательно должна быть солнечная погода, они способны улавливать энергию в дождь и в зимнее время. Это не влияет на качество света. Он будет одинаково ярким. Затем, энергосберегающие аккумуляторы в темное время суток автоматически включаются, и освещают улицу. Работают они без какого-либо подключения к электропроводке. Значит, фонарь вы можете разместить в любом удобном для вас месте, независимо от удаленности источника питания. Как видно, уличное освещение на солнечных батареях удобно в использовании и экономит ваши средства.
Время работы фонаря зависит от мощности батареи. Средняя мощность 600-700 мА в час. Такой светильник будет работать примерно 8-10 часов. Экономить режим работы уличного фонаря можно с помощью дополнительной функции, контролирующей расход энергии аккумулятора. Световой поток будет контролироваться датчиком движения. Пока движения нет, яркость света составляет на 25-50% меньше, чем обычно. В случае обнаружения движения, яркость света в автоматическом режиме становится 100%. Такая функция не обязательна, но поможет продлить срок эксплуатации батареи.
Составляющие солнечного фонаря
1. Обязательно наличие солнечной батареи. Благодаря наличию фотоэлектрического элемента, перерабатывает свет в энергию. Гарантия работы 20 лет.
2. Мощный аккумулятор выполняет функцию накопления. Гарантийный срок службы зависит от модели. От 5 до 15 лет.
3. Блок управления. Контролирует расход энергии в экономном режиме. Отвечает за автоматическое включение и выключение светильника с наступлением времени суток. Он увеличивает срок службы батареи.
4. Наличие лампы, которая отдает свет.
5. Должен быть антивандальный защитный корпус. Для аккумулятора и блока управления.
Преимущества солнечных батарей
Не нужен постоянный уход и замена деталей, в том числе накопителя энергии. Прочный корпус обеспечивает неуязвимость внутренних деталей и продлевает срок их службы. Внутри находятся солнечная батарея и накопитель. Фонарь неподвижный, поэтому, повреждений для них будет минимум.
Хоть автономное освещение на солнечных батареях, и кажется, что прослужат они не долго, на практике это не так. Отличает долгий срок службы. До 27 лет. Постоянная ежедневная работа батареи не сокращает работоспособность. Средняя батарея может обеспечивать светом до 100 000 часов, благодаря наличию светодиодов необходимой мощности.
Фонарь защищен корпусом с защитой от воды и грязи. Специальное покрытие против коррозии обеспечивает безопасность работы. Ни дождь, ни снег, ни жара не портят систему освещения.
На своем дачном участке или дома, вы вряд ли хотели бы увидеть промышленный стальной уличный фонарь. Достоинство автономных солнечных светильников заключается в разнообразии материалов и красоте дизайна. Светильники могут быть из бронзы, стекла и дерева.
Освещение на солнечных батареях экологически чисто и не вредит здоровью человека. Обойдется значительно дешевле традиционного освещения.
Чтобы провести себе уличное освещение на солнечных батареях купите все необходимое для этого. Подумайте о количестве солнечных батарей для вашего двора или сада. Если нужно, обратитесь для подсчета к специалистам. Учитывайте ваш бюджет. Так как цены колеблются в зависимости от модели и наименования. Можно сделать это в любом строительном или специализированном магазине вашего города. Или воспользоваться услугами интернет-маркетинга.

Российские солнечные панели

На сегодняшний день солнечных панелей российского производства на мировом рынке не много. Но российским производителям солнечных батарей, всё же удаётся экспортировать свой продукт в страны Европы (Чехия и Германия). Импортируемых моделей на много больше (Китай, Тайвань, Таиланд, Германия). Но и здесь санкции против России сыграли свою роль — число современных производителей солнечных батарей в России с каждым днем возростает. На сегодняшний день Россия имеет налаженные производства солнечных батарей в нескольких городах: Москва, Зеленоград, Рязань, Краснодар, Челябинск.
К Российским производителям солнечных батарей относятся:

В Москве:
НПП «Квант» (монокристаллические, поликристаллические и трёхкаскадные кремниевые батареи, электростанции ФЭС -Тигр);
ООО «Витасвет» ( 4 модели).

В Зеленограде:
ЗАО «Телеком — СТВ» (монокристаллические солнечные кремниевые мощностью от 18 до 270 Вт;мультикристаллические солнечные кремниевые — от 15 до 250 Вт; монокристаллические солнечные модули с повышенной эффективностью — от 33 до 230 Вт; гибкие солнечные модули — от 16 до 215 Вт; складные солнечные модули — от 120 до 180 Вт);
ООО «СоларИннТех» ( всего одна модель солнечных батарей марки Sunways мощностью в 30 Вт).

В Рязани:
ОАО «Рязанский завод металлокерамических изделий» (две модели RZMP).

В Краснодаре:
ОАО «Сатурн» (солнечные панели с полированной поверхностью, с алюминиевым зеркалом, со встроенными диодами, кремниевые и арсенидгалиевые);

В Новочебоксарске (Чувашия):
Hevel (тонкоплёночные солнечные панели — очень экономичные, дешевые).

В Челябинске (Алтайская республика):
«Авелар Солар Технолоджи» (монокристаллические и поликристаллические панели, сетевые и мобильные солнечные электростанции).

Разновидности солнечных батарей производимых в России.

Современные российские солнечные батареи выпускаются в нескольких модификациях:
монокристаллические (из монокристаллов кремния);
поликристаллические (из большого количества кристаллов, более дешевые);
миниатюрные (для подзарядки различного рода электронной техники);
на основе трёхкаскадного кремния (обладают целым рядом преимуществ);
тонкоплёночные (очень дешевые).

Солнечные электростанции в России

В последнее время производители солнечных батарей в России стали производить солнечные электростанции.
Они могут быть двух типов:
автономные солнечные электростанции (для электроснабжения жилых помещений стационарных и передвижных);
сетевые солнечные электростанции (для электроснабжения крупных стационарных объектов).
Самые известные солнечные электростанции в России производятся компанией «Авелар СоларТехнолоджи». Это дочерняя компания от российских производителей солнечных панелей «Хевел» находится в г. Челябинске (Алтайская республика). Компания «Авелар Солар Технолоджи» является первой компанией которая осуществила установку солнечной сетевой электростанции в России. Она предоставляет услуги по установке электростанций «под ключ».
В России солнечные электростанции на основе трёхкаскадного кремния производятся НПП «Квант». Такие российские солнечные панели обладают рядом свойств:
могут вырабатывать электроэнергию при отсутствии прямого солнечного излучения;
не поддаются разрушению при ударах, не простреливаются пулями;
продолжительный срок эксплуатации.

Преимущества и недостатки российских солнечных панелей.

Главным преимуществом российских солнечных батарей является их цена. Для российского потребителя приобретение импортных батарей — слишком дорогое удовольствие, к тому же приобрести панель любой мощности можно и у местных производителей. Импортируемые панели германского и китайского производства на много дороже, чем панели российских производителей, а качество некоторых образцов даже ниже по отношению к нашим местным климатическим условиям. Российские модели солнечных батарей не уступают в мощности зарубежным аналогам, а некоторые нововведения намного улучшаю работу наших батарей в пасмурную, дождливую и даже в снежную погоду, что является огромным плюсом. Коэффициент полезного действия составляет от 18 до 25 % — это тоже самое, что и у импортных, зато износостойкость от 25 до 70 лет. Износостойкость отечественной продукции зависит от способов изготовления местных образцов и применения специальных материалов приспособленных к высокой (+50) и низкой (-50) температурам. Это позволяет на много продлить срок эксплуатации солнечных электростанций российского производства и солнечных батарей российского производства. Окупаемость российского товара составляет примерно 5 лет — это соответствует современным международным стандартам.

Сравнительный обзор солнечных панелей для вашего дома.

Перед покупкой солнечных панелей, в первую очередь, требуется определиться с их типом. При выборе конкретной модификации, как правило, учитывается весь спектр параметров и характеристик. В данной статье будут рассмотрены основные параметры солнечных батарей для домашнего использования, их преимущества и недостатки, а также целесообразность использования выбранной конструкции.
Отметим также, что сам термин солнечные панели имеет ряд синонимичных значений, таких как солнечные модули и солнечные батареи – все это представляет класс фотоэлетрических солнечных элементов, использующихся для получения электроэнергии. Продолжить читать статью 

Гелиосистема — солнечное отопление современного дома

Поиск оптимальных альтернативных источников энергии давно стал приоритетом современных технологических разработок. Солнце – универсальный спектр света и тепла, доступный каждому. Чтобы использовать отопление солнечной энергией, учёные разработали гелиосистемы с множеством инновационных устройств различного типа: солнечный коллектор, солнечная батарея, нагреватель и другое. Осталось понять – есть ли эффективность, когда применяется солнечное отопление, цена которого намного ниже, чем стоимость привычных нагревательных систем, или это очередное «трендовое» ноу-хау?

Продолжить читать статью 

Конструкция и принцип работы вакуумного солнечного коллектора

Коэффициент полезного действия такого типа коллекторов, при обеспечении высокой степени вакуума, составит около 98%. Как правило, установка солнечных вакуумных коллекторов производится на крыше объекта, что позволяет максимально полезно использовать ее площадь. Угол монтажа коллектора выбирается производно в диапазоне от 5 до 90 градусов. Минимальные значения угла наклона солнечного коллектора позволяют обеспечить циркуляцию теплоносителя. Срок использования вакуумных солнечных батарей достаточно высок и составляет более 20 лет. Вариантов у потребителя несколько: можно вакуумный солнечный коллектор купить либо изготовить своими руками. Цена вакуумных солнечных батарей вполне доступна, таким образом использование таких систем весьма целесообразно.

Конструкция и принцип работы вакуумного солнечного коллектора

Предназначение плоского вакуумного солнечного коллектора заключается в обеспечении аккумулирования солнечной энергии при любых погодных условиях и температуре окружающей среды.

Содержание:

  1. Как работает солнечный вакуумный коллектор
  2. Конструкция солнечного вакуумного коллектора
  3. Виды гелиосистем

Как работает коллектор?

  • Одним из важнейших элементов конструкции является автоматизированный резервуар-теплообменник, способный преобразовывать, поддерживать и сохранять тепло, полученное при накоплении солнечной энергии, а также и от дополнительных источников энергии, которые используются для подстраховки работоспособности системы отопления в целом.
  • Вода, нагретая до определенной температуры, из теплообменника, расположенного во внутреннем блоке, подается в радиаторы, использующиеся для системы отопления, при этом вода, находящаяся в резервуаре, поступает в бак для поддержания ГВС.
  • Для контроля значений рабочей температуры блоков и выбора требуемого режима работы системы установлен блок управления. Он отвечает за поток энергии теплового носителя через теплообменник и определяет куда именно стоит направить тепло: на водоснабжение либо отопление.

  • В ночное время суток автоматика поддерживает минимальные параметры работы системы и поддерживает значения установленной температуры.
  • Основное преимущество использования вакуумных солнечных коллекторов для отопления дома — это их малая инерционность. При этом их использование позволяет обеспечивать горячее водоснабжение в течение года и отопление в холодный период, позволяющее экономить традиционно использующиеся источники получения тепловой энергии.

Схема и конструкция солнечного коллектора

вакуумный солнечный коллектор - схема и принцип работы
вакуумный солнечный коллектор — схема и принцип работы

Основные блоки вакуумного коллектора: непосредственно вакуумный коллектор, резервуар-теплообменник и системный контроллер солнечных систем нагрева воды. Конструктивно вакуумный коллектор выполнен в виде трубчатых профилей, соединенных параллельными рядами. Как правило используются трубы конструкции ”стекло-стекло”, произведенные из боросиликатного стекла. Для покрытия внутренней трубы используется селективный слой, предназначенный для абсорбции солнечной энергии и устранения тепловых потерь. Функциональность таких труб позволяет их использовать при пасмурной погоде. При отрицательных температурах происходит преобразование в тепло как прямых, так и рассеянных солнечных лучей. Также для образования тепла используется природное ИК-излучение. Конструкция вакуумной трубы реализована по принципу термоса: она изготовлена из двух трубок различного диаметра, между которыми поддерживается вакуум. Вакуум обладает фактически нулевой теплопроводностью и обеспечивает высокий уровень термоизоляции.

  • Вакуумные трубы во всесезонных системах имеют дополнительные термотрубки или тепловые трубки. Они представляются собой медные трубки, наполненные жидкостью с низкой температурой кипения. При непосредственном воздействием тепла происходит испарение жидкости. При этом забирается тепло самой трубки. Далее пар поднимается в расположенный выше наконечник, где происходит его конденсация и передача тепла тепловому носителю в основном контуре либо специальной жидкости, находящейся в отопительном контуре. Далее конденсат по стенкам стекает вниз и процесс возобновляется.
как работает солнечный коллектор
как работает солнечный коллектор
  • Приемник коллектора как правило изготавливается из меди. При этом чаще всего применяется дополнительная полиуретановая изоляция. Приемник закрыт истом нержавеющего покрытия для дополнительной защиты. Передача тепла осуществляется посредством медной «гильзы» приемника. Отопительный контур отделяется от блока трубок, что позволяет поддерживать работу системы при поломке одной или нескольких трубок. Замена поврежденных трубок производится без слива используемой жидкости из рабочего контура.
  • Резервуар-теплообменник выполняет функции бойлера и используется для аккумулирования и сохранения тепла. Резервуар, как правило, имеет внутри конструкции одну либо две спирали для теплообмена.
  • Типичная конструкция системы как правило включает насос, манометр и клапан давления, кран для регулирования количества воды, различные соединительные механизмы и вентили, в том числе набор, обеспечивающий безопасное подсоединение резервуара к отопительной системе, вентиль безопасности давления в 6 атм. Бак дополнительно может быть оснащен электрическим нагревателем мощностью 1-3 кВт.
  • Если требуется обеспечить единовременную подачу горячего водоснабжения и отопления, происходит распределение аккумулированной солнечной энергии. Когда заданное значение температуры достигается, подача тепла автоматически переводится на контур отопления. Настройки перераспределения тепла могут быть изменены в зависимости от времени года либо климатической зоны. К данной системе отопления могут быть подсоединены дополнительные отопительные приборы.

  • Контроллер водонагревательных систем используется для задания значений температуры в резервуаре теплообменника и коллекторе, а также определения требуемого режима работы вакуумного солнечного коллектора согласно полученным данным.
  • Основные функции контроллера заключаются в следующем: индикация температуры в основных блоках: коллекторе, резервуаре, индикация значения температуры в обратном потоке теплоносителя, задание температуры запуска, при которой используется принудительная циркуляция в теплоносителе, таймер пуска и остановки всей системы отопления, определение температуры и продолжительности работы функции дополнительного подогрева, задание минимального значения температуры, индикация датчиков, имеющих повреждения.

Типы гелиосистем

Выделяют два основных типа гелиосистем: сезонные, всесезонные или круглогодичные.

Вакуумные солнечные батареи, сконструированные на базе технологии прямой теплопередачи, относятся к сезонным системам. Принцип действия таких систем достаточно прост: вода из бака поступает в соединенные медные трубки, где нагревается и затем возвращается в контур.

Тепло в таком типе солнечных батарей передается воде без использования в работе дополнительных элементов и блоков. При этом требуется большой объем воды в контуре теплообменника (от 60 до 200 л). Основными преимуществами сезонных систем являются низкая стоимость при высоком КПД, составляющий до 98%. Это конечно при условии использования и покупки селективного покрытия для солнечных коллекторов.

К круглогодичным системам относят вакуумные солнечные батареи, в которых дополнительно установлены термотрубки. Принцип работы таких коллекторов схож с работой установок центрального отопления. Через коллектор и змеевик протекает специальная жидкость («незамерзайка»). Эта жидкость предназначена для забора тепла из медных трубок. Далее она поступает в бак, аккумулирующий тепло для непосредственного нагрева воды через змеевик. Процесс протекает до тех пор, пока значения температуры бака и теплового приемника не сравняются. Насос контролируется электроникой, датчики температуры при этом устанавливаются как в коллекторе, так и в баке-аккумуляторе. Давление в системе может быть выше требуемых значений при недостатке потребления воды. Расширительный бак также позволяет избежать подобных ситуаций.

Области применения гелиосистем многогранны и включают: обеспечение жилых помещений, социальных и культурных объектов горячим водоснабжением и отоплением. При этом экономия ресурсов достигает 50%. Используются в сочетании с «теплыми полами». Если вам требуется обеспечить ваш дом теплом, то вы можете купить вакуумный солнечный коллектор, либо сделать его своими руками. Стоимость вакуумных коллекторов для отопления дома достаточна высока, но продуктивность и энергоемкость таких систем компенсирует материальные издержки. При этом следует учитывать, что надежность коллектора, собранного и установленного профессионалами выше, чем у самодельного.

Плоский солнечный коллектор

Солнечный коллектор в независимости от типа конструкции представляет собой устройство для «захвата» тепловой энергии солнца и преобразования ее для нужд конкретного потребителя. Один из самых простых и часто встречающихся типов солнечных коллекторов – плоский коллектор, в основе работы которого использован парниковый эффект.

Конструкция плоского коллектора солнечной энергии

  • Для плоского солнечного коллектора возможно применение как обычного, так и закаленного стекла с максимально высоким коэффициентом пропускания спектрального и высокоселективное теплопоглощающее покрытие.
  • Поверхность стекла должна быть матовой, для уменьшения отражения.
  • Плоский коллектор состоит из корпуса, как правило алюминиевого, при помощи которого и крепится к стене дома или крыше. Основной элемент коллектора — это абсорбер с теплопоглощающим покрытием, как правило, изготовленный из меди.
  • К абсорберу припаивается трубопровод, использующийся для отвода тепла. Сама конструкция находится в стеклянном корпусе, одна поверхность которого принимает излучение, а другая утеплена для снижения потерь при нагреве. Отвод тепла производится посредством теплообменника из меди или алюминия, заполненного водой или антифризом.

Особенности выбора и покупки плоского солнечного коллектора:

    • Следует более подробно остановится на выборе стекла для солнечного коллектора. Самое низкое по продуктивности – обычное стекло, поэтому его использование не целесообразно. Лучшим вариантом считается антирефлексирующее стекло. Его особенность заключается в специальном рисунке, нанесенном на обе поверхности материала. Таким образом достигается максимально возможный коэффициент поглощения (до 96%).
  • Еще один нюанс в использовании солнечных коллекторов – это поддержание чистоты стекла. В этом случае используются самоочищающиеся или полярные стекла. Выгорание всего органического мусора происходит за счет нанесенного слоя диоксида титана и стекло намного дольше остается чистым. Также важно селективное покрытия для солнечного коллектора.
  • Одним из самых важных моментов является хорошая теплоизоляция, для снижения тепловых потерь. Как правило теплоизоляция плоских коллекторов устанавливается толщиной около 40 мм и изготавливается из материалов с низкой теплопроводностью, таких как минеральная вата или светоотражающая алюминиевая пленка.

Преимущества и недостатки плоских солнечных коллекторов для отопления:

  • Подытоживая все вышесказанное, плюсы плоских солнечных коллекторов следующие: высокая производительность, простота и надежность конструкции, долговечность, возможность работы в течение всего года при определенных погодных условиях. Наиболее эффективно применять рассматриваемый тип коллекторов для нагрева воды выше на 20…40°С выше температуры окружающей среды.
  • Но и нельзя не остановится на недостатках такой конструкции: низкая производительность в холодное время года и в пасмурную погоду, сложность монтажа, необходимо попадание солнечных лучей под прямым углом для достижения максимальной эффективности, требует регулярной очистки от загрязнений, слабая ремонтопригодность, так как конструкция не подлежит блочному ремонту (только полная замена).

Как было отмечено выше, плоские коллекторы как правило устанавливают на крышу или стены домов. Наиболее рационально установить солнечные коллекторы еще при строительстве здания, т.к. это значительно снизит расходы на кровельные материалы.

Полимерная солнечная батарея

Несмотря на то, что солнечные батареи экологически чистые и по сути снабжают Вас бесплатной электроэнергией, после срока окупаемости, у них есть главный недостаток — они очень дорогие. Дабы убрать этот самый негативный фактор для потребителя, в последнее время проводится всё больше разработок в сфере удешевления стоимости солнечных батарей. Результатом таких разработок являются полимерные солнечные панели. Несмотря на свой низкий КПД, они обладают массой позитивных качеств, которые и рассматриваются в этой статье.

полимерные солнечные панели
полимерные солнечные панели

Что из себя представляют полимерные солнечные панели по сравнению с кремниевыми?

Обычные солнечные панели представлены большим количеством фотоэлементов. Эти фотоэлементы объединены в единую сеть, которая в свою очередь закрепляется на специальной поверхности, которая покрыта селективным покрытием для солнечных батарей. Что такое фотоэлемент? Фотоэлемент — это полупроводник, преобразующий солнечную энергию в электрический ток. Конечно необходим ещё ряд устройств в солнечной сети, которые бы накапливали энергию, стабилизировали её и превращали в постоянный ток в переменный, но всё же основным в получении энергии является фотоэлемент.

Вот в них то и разница: в обычных батареях такие полупроводники изготовлены из кремния. Именно из-за кремния процесс изготовления сложен и дорог по цене. Кремния, как ископаемого на планете Земля, достаточно. Но процесс переработки и очистки кремния очень сложен. Ну и конечно никто не отменял утилизацию после использования солнечных батарей, когда они выходят из строя, после длительной эксплуатации. Это тоже стоит денег, ведь в солнечных панелях содержится кадмий. Ещё один минус состоит в том, как работают кремниевые батареи. При большом нагреве, производительность снижается. Это накладывает необходимость использования специальных систем охлаждения, что снова сводит вопрос к деньгам.

Итак, солнечные полимерные элементы состоят из последовательно соединённых слоёв-плёнок, каждый из которых отвечает за определённую функцию. Это и определяет толщину панели. На полимерную основу накладывают фотоактивные слоя, которые в свою очередь состоят из акцептора и донора.

Также по конструкции батареи бывают двух типов: прямая и реверсная(обратная, перевёрнутая). Название исходит от работы электрических зарядов внутри. В обратном строении, заряды экстрагируются противоположными по заряду электродами. Есть свои плюсы и минусы: обычное строение обеспечивает большую эффективность, а обратное большую стабильность.

Как ни крути, очень много факторов в использовании традиционных солнечных батарей сводятся к деньгам. Поэтому остро стал вопрос поиска альтернативы. Именно в качестве такой альтернативы выступают сегодня полимерные солнечные батареи.

В чём отличие полимерных солнечных батарей?

Сегодня эта тема очень жива и поэтому многие фирмы заняты разработкой именно солнечных полимерных панелей. По сути это плёнка, состоящая из нескольких конструктивных элементов:

  • активный слой — полимер
  • электроды из алюминия
  • гибкая подложка
  • защитный слой
  • соединительные элементы для объединения в большие площади

Итак полимерный полупроводник или полимерный фотоэлемент состоит из внутренних элементов, которые расположены на гибкой подложке и защищены сверху слоем. Это позволяет делать гибкие солнечные батареи.

Преимущества очевидны:

  • Возможность делать гибкие солнечные элементы
  • Модульность конструкции позволяет объединять между собой бесконечное количество отдельных гибких панелей, повторяя любые формы поверхности, на которой располагаются батареи
  • Лёгкость по весу и лёгкость в эксплуатации
  • Компактность. Зачастую такие батареи можно свернуть в рулон
  • Дешевизна производства в сравнении с традиционными батареями
  • Экологичность производства, даже в сравнении с кремниевыми батареями

Конечно, не всё так уж радужно и у полимерных панелей есть один большой недостаток: низкоэффективное преобразование энергии солнца. Это обуславливает низкую заинтересованность в потреблении со стороны пользователей. Самые последние исследования позволили выдать всего лишь 6,5% КПД с учётом освещённости на квадратный сантиметр в 0,2 Вт. Конечно кремниевые батареи с уровнем КПД в 40% куда более интересны для потребителей. Но тем не менее полимерные батареи всё же перспективны в своём развитии.

В промышленных размерах полимерные батареи выпускает датская компания Mekoprint A/S. Интересно, что солнечные панели этого производителя в виде плёнки, можно разрезать, сворачивать и придавать им любую форму. Можно наклеить плёнку на любую поверхность и при этом вырабатывать электричество, пусть и небольших объёмов. Это открывает широкие перспективы в использовании и применении например, для транспортных средств. Только представьте электромобиль, полностью обклеенный такой плёнкой. При чём без ущерба для дизайна, ведь такая плёнка сможет полностью повторить форму авто. Полимерная солнечная батарея легко интегрируется даже в одежду. К примеру, этот же датский производитель встроил батарею в шапку, что позволило питать небольшой радиоприёмник. Словом, зерно будущего посеяно, теперь только подождать когда такие источники смогут выдавать более-менее приличный КПД.

При этом производство таких батарей в среднем в два раза дешевле производства привычных кремниевых батарей. И ещё более экологично чем производство кремниевых панелей. Выпускать полимерные солнечные панели не вреднее, чем пластиковую посуду, например. При этом кремниевые, в производстве выбрасывают достаточно серьёзное количество отходов в атмосферу.

В общем развитие полимерных солнечных панелей даёт возможность говорить о скорой замене традиционных источников электроэнергии и даже солнечных кремниевых батарей. А благодаря гибкости таких источников, их применение возможно практически везде.

И наконец, нельзя не упомянуть и о чистоте процесса производства таких батарей. Оказывается такое производство не вреднее, чем производство обычной пластиковой посуды и о вредных выбросах в атмосферу, происходящих при производстве обычных батарей из кремния скоро можно забыть.
Вполне возможно, что через какое-то время мы забудем о газе и угле, так как при дальнейшем развитии этой технологии вполне возможно что вырабатываемая электроэнергия с использованием солнечных полимерных батарей окажется дешевле процесса получения электроэнергии путем сжигания традиционных энергоносителей.

Селективное покрытие для солнечного коллектора

Речь в этой статье пойдёт не столько о самом коллекторе, как о селективном покрытии для солнечного коллектора. Что это вообще такое, зачем применяется и как сделать своими руками селективное нанесение.

Для чего применяется селективное покрытие?

Слой такого типа в солнечных батареях является едва ли не самым важным элементом в системе. Смысл в том, чтобы поглощать как можно больше солнечного света, излучения. Такое покрытие не только притягивает полный спектр освещения, но и превращает в тепло и помогает делать это более эффективно. Название селективного покрытия происходит из того смысла, что правильный состав напыления или нанесения, позволяет накапливать и поглощать тепло, прямо как это делают в солнечной панели специальные диоды.

Как правило, химикат для нанесения селективного покрытия купить можно плюс-минус за 1$ на один квадратный метр. в общем-то такую процедуру увеличения КПД солнечного коллектора можно проделать самому, своими руками. Но важно знать как. Если правильно подойти к делу, можно не только сэкономить средства, но и добиться большего толка от вашей системы нагрева теплоносителя.

Селективное покрытия для солнечного коллектора — как сделать своими руками?

Во-первых давайте разберёмся что такое коэффициент селективности. По сути это соотношение поглощённой энергии и отданной энергии солнца. Именно этот показатель важен при выборе готовой продукции для нанесения селективного покрытия. Что можно выбрать в качестве такого покрытия:

  • Готовый специальный химикат, который продаётся в соответствующих магазинах
  • Оксид меди
  • Оксиды различных металлов
  • Специальный утеплительный тонкий материал
  • Чёрный хром
  • Можно просто покрасить принимающую поверхность чёрной краской(матовой) или накрыть чёрной плёнкой или просто использовать газовую сажу. Но толку от такого нанесения будет в разы меньше, чем от специального напыления
  • Также есть специальная селективная краска для солнечных коллекторов
  • Специальное селективное покрытие с антиконвекционным эффектом. Такое нанесение уменьшает конвективную теплоотдачу. Для того чтобы покрытие подобного типа работало на максимум, необходимо подготовить поверхность, отполировать её и выготовить таким образом, чтобы она хорошо отражала солнечные лучи.

Как бы там ни было, при выборе материала покрытия необходимо учитывать коэффициент селективности: от 8,5 до 16. Селективное покрытие для солнечных коллекторов обладает и другими параметрами, но этот один из самых важных.

Как работает солнечная батарея

Сегодня монокристаллические и поликристаллические солнечные панели получили настолько широкое распространение, что каждый пользователь может заказать комплектующие и самостоятельно своими руками собрать и установить фотоэлектрические панели. Конечно, вопрос цены остаётся актуален, ведь солнечные панели совсем не дешёвый вариант, зато это экологично. А стоимость, с каждым годом становится всё дешевле. Так что каждый, наверняка сталкивался с идеей использования такого источника электричества, но вот принцип работы солнечной батареи знает далеко не каждый.

Видео о том, как работает солнечная батарея

Принцип работы солнечной батареи

Чтобы понять как работает солнечная батарея необходимо разобраться из чего она состоит. Как правило солнечный источник энергии состоит из таких частей:

  • Генератор постоянного тока(она же солнечная панель)
  • Аккумулятор с контролем заряда и инвертором, преобразующим ток в переменный
  • В свою очередь панель состоит из фотоэлектрических преобразователей, которые, говоря простым языком, трансформируют солнечную энергию в электрическую. Чаще всего это поликристаллические или монокристаллические кремниевые батареи. Разница в КПД и технологии производства.

Принцип работы солнечной электростанции заключается в последовательном взаимодействии ряда элементов единой сети. Соединяются элементы в солнечной панели последовательно и параллельно. Делается это для того, чтобы увеличить мощность, напряжение и ток. Плюс, такое соединение обезопасит при выходе из строя одного элемента — остальные детали цепи.

  • Также батареи пронизаны так называемыми диодами. Принцип действия солнечных батарей основывается именно на этих элементах. Такие диоды предохраняют панель во время частичного затемнения. Во время таких затемнений, батарея не прерывает свою работу, но вырабатывает на четверть меньшую мощность. Суть в том, что диоды не дают перегревать солнечные элементы, которые во время затемнения начинают потреблять электричество вместо того, чтобы вырабатывать.
как работает солнечная батарея
как работает солнечная батарея
  • Дальше электроэнергия накапливается в аккумуляторах. А после уже отдаётся в систему. Важный момент в том, чтобы количество параллельно и последовательно соединённых элементов в солнечной панели, было расчитано таким образом, чтобы напряжение, которое подведено к аккумуляторам, превышало напряжение самого аккумулятора. Даже с учётом просадки. При этом нагрузочный ток солнечной батареи должен обеспечивать достаточное количество зарядного тока. Этот параметр обязательно учитывается при расчёте солнечных батарей.
  • Ещё один важный фактор в работе солнечных панелей — полезная мощность. Именно этот показатель отражает экономичность использования для пользователя. Высчитывается такая мощность исходя из напряжения и выходного тока установки. А эти показатели в свою очередь зависят от силы солнечного освещения, которое попадает непосредственно на панель. Кстати, слишком большие температуры для работы солнечных батарей не полезны. Ведь при интенсивном нагревании солнцем, у электровырабатывающих элементов падает так называемая электродвижущая сила. Тем не менее, чем ярче освещения от солнца, тем больший ток вырабатывается.

Теперь немного формул о принципе работы солнечных батарей.

Как работает солнечная панель? К примеру, солнечная батарея замкнута на нагрузку с измерянным сопротивлением (Rн). В цепи, следовательно, появляется ток (I). При этом показатель I формируется в прямой зависимости от качества преобразователя в цепи, силой солнечного освещения и сопротивления. Далее разберём . — это напряжение, которое создаётся на зажимах солнечных батарей. В итоге зная эти показатели, мы можем высчитать мощность, которая появляется в нагрузке на установку: Pн = IнUн

Однако оптимальное сопротивление у каждой панели своё и зависит оно от уровня КПД.

  • При пасмурной погоде заряд аккумуляторов из-за меньшей выработки панелями электричества, естественно снижается. Во время такого процесса, электроэнергию принимает приёмник. Другими словами, аккумуляторы работают всегда либо на заряд либо на разряд. Этот механизм взаимодействия управляется контроллером.
  • Чаще всего работа аккумуляторов в цепи устроена таким образом, что они очень быстро заряжаются до 80-90%, а потом долго набирают остаток заряда. На сегодняшний день самые эффективные для использования в системах альтернативного снабжения электроэнергией батареи — гелевые. Такие батареи не требуют обслуживания и неприхотливы в условиях работы. При этом срок службы обычно достигает 10 лет.
схема работы солнечных батарей
схема работы солнечных батарей

Контроллер, резистор и инвертор

  • Контроллер необходим для подключения аккумуляторов в сеть. Он контролирует заряд.
  • Резистор поглощает избыточную мощность выработки электроэнергии.
  • Инвертор необходим для нормального снабжения электросети, кроме тех случаев, когда необходимо запитать приёмники, которые работают от постоянного напряжения, а не от переменного.

Конечно, разобраться во всех тонкостях работы солнечной батареи сложно. Но надеемся, Вы найдёте ответы на страничках нашего сайта. Более наглядно работу солнечных элементов можно понять из графических схем.